Table 25 Solar system data: mass characteristics and orbit

Object Mass Requator(m) _ Density Angular Average a(AU) e i®) Sidereal
(10*kg) .. Equatorial (10° kg/m?) momentum speed Semi-major Orbital Orbital period
radius (10* kg m?/s) (km/s) axis of orbit?  eccentricity  inclination® (years)
Sun 1.99x10° 0.696x10° 1.409 170! — — — — —_
Mercury 0.33 2.44x10° 5.46 0.906 47.9 0.3871 0.206 7.00 0.241
Venus 4.87 6.05x 106 5.23 18.5 35.1 0.7233 0.007 3.39 0.615
Earth 5.97 6.38x10°6 5.52 26.7 29.8 1.0000 0.017 0.00 1.000
Mars 0.642 3.40x108 3.92 3.52 242 1.5237 0.093 1.85 1.881
Jupiter 1899 7.15x107 1.31 19 400 13.1 -5.2028 0.048 1.31 11.862
Saturn 568 6.03x107 0.7 7840 9.64 9.5388 0.056 2.49 29.46
Uranus 87.2 2.56x107 1.3 1700 6.81 19.1914 0.046 0.77 84.01
Neptune 102 2.48x107 4.66 2500 544 30.0611 0.010 1.77 164.79
Pluto 0.66 49 17.9 4.75 39,5294 0.248 17.15 248.43

1.20x 108

1Spin angular momentum of the Sun. -
21 AU = 1.496 x 10t m,

3nctination of orbit plane relative to the ecliptic.

See also Tables 2.6, 2.7 and 4.1..
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Table 4.1 - Some physical properties of the
Earth’'s Moon. See also Tables 2.5, 2.6 and 2.
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Parameter\  p (m%/s?)  Equatorial  Surface Oblateness  Sphere of  Axial rotation
Body Gravitational  surface escape J2 influence period
parameter gravity velocity (10° km) (sidereal)
(m/s?) (m/s)
Sun 1327 x 102 27398  6.18 x 10° — — ~ 27 days
Mercury 2.203 x 10" 3.70 4250 — 0.09-0.14  58.646days
Venus 3.249 x 10" 8.87 10360 27x 105 0.61-0.62  243.019days
Earth 3.986 x 10 9.81 11180 0.001083 0.91-0.94  23"56™22.7°
Mars 4.283 x 10 3.71 5020 0.001964 0.52-0.63  24"37m22.6°
- Jupiter 1.267 x 10Y 23.12 59530 0.01475 459-50.5  ~ 950"

Saturn 3.794 x 10'® 9.05 35560 0.01645 51.6-57.5 ~ 10"15"
Uranus 5.780 x 10%° 7.77 21250 0.012 49.4-541  ~ 17°50™
Neptune  6.871 x 10V 11.00 23540 0.004 85.7-87.6 ~ 1910
Pluto 1.021 x 102 0.40 1300 — 11.4-18.8  6.387days
Moon 4.903 x 1012 1.62 2380 0.0002027 0.157-0.162 27.322days
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6.1.3 Classical Orbital Elements

When solving the two-body equations of motion, we need six constants of
integration (initial conditions) for the solution. Theoretically, we could find the three
components of position and velocity at any time in terms of the position and velocity
at any other time. Alternatively, we can completely describe the orbit with five
constants and one quantity which varies with time. These quantities, called classical
orbital elements, are defined below and are shown in Fig. 6-3. The coordinate frame
shown in the figure is the geocentric inertial frame,” or GCI, defined in Chap. 5 (see
Table 5-1). Its origin is at the center of the Earth, with the X-axis in the equatorial
plane and pointing to the vernal equinox Also, the Z-axis is parallel to the Earth’s spin
axis (the North Pole), and the Y-axis completes the right-hand set in the equatorial
plane. The classical orbital elements are:

a: semimajor axis: describes the size of the ellipse (see Fig. 6-1).
e eccentricity: describes the shape of the ellipse (see Fig. 6-1).

‘A sufficiently inertial coordinate frame is a coordinate frame that we can consider to be non-

accelerating for the particular application. The GCI frame is sufficiently inertial wher
considering Earth-orbiting satellites, but is inadequate for interplanetary travel because of its
rofational acceleration around the Sun.

Fig. 6-3.

inclination: the angle between the angular momentum vector and the unit
vector in the Z-direction.

. right ascension of the ascending node: the angle from the vernal equinox to

the ascending node. The ascending node is the point where the satellite passes
through the equatorial plane moving from south to north. Right ascension is
measured as a right-handed rotation about the pole, Z.

: argument of perigee: the angle from the ascending node to the eccentricity
vector measured in the direction of the satellite’s motion. The eccentricity
vector points from the center of the Earth to perigee with a magnitude equal
to the eccentricity of the orbit.

- true anomaly: the angle from the eccentricity vector to the satellite position
vector, measured in the direction of satellite motion. Alternately, we could
use fime since perigee passage, T.

(Always Defined)

lo

Equinox Line of Nodes

Direction

Line of Nodes Periapsis

Definition of the Keplerian Orbital Elements of a Satellite in an Elliptic Orbit. We
define elements relative to the GCI coordinate frame.



4.4 ORBIT PERTURBATIONS

At the distances of orbiting spacecraft from the Earth its asphericity and non-uniform
mass distribution result in its gravitational potential departing from the simple 1/r func-
tion, which was assumed in Section 4.2. Equation (4.1) is not valid in this situation and
the equation of motion (4.4) must be modified to take account of the Earth’s gravita-
tional field.

There are additional forces that act on space vehicles, which were not included in the
Keplerian formulation. Some are from additional masses that provide secondary gravi-
tational fields; for Earth orbit, the Moon and the Sun provide such forces. Also, at low
altitudes (typically at less than 1000km altitude) the Earth’s atmosphere imposes a drag
force. Table 4.2 lists the major perturbing forces, and their relative importance, for space
vehicle orbital analysis.

The equation of motion for a space vehicle about a body taking into account perturbative
influences may be written in the form

r=-VU+b (4.33)

Table 4.2 Magnitude of disturbing accelerations acting on
a space vehicle whose area-to-mass ratio is A/M. Note
that A is the projected area perpendicular to the direction
of motion for air drag, and perpendicular to the Sun for
radiation pressure

Source Acceleration (m/s%)

500km Geostationary orbit
Air drag* 6 x 107°A/M 1.8 x 107 3A/M
Radiation pressure 4.7 x 107%A/M 4.7 x 107%A/M
Sun (mean) 5.6 x 1077 3.5 % 107°
Moon (mean) 1.2 x 1076 7.3 % 1076
Jupiter (max.) 8.5 % 10712 52 x 1071

*Dependent on the level of solar activity



where U is the gravitational potential field and b is the force vector per unit mass due to
other sources of perturbation, to which the vehicle is subject. A general closed solution is
not possible, but there are a variety of solution methods that are appropriate for spacecraft
dynamics. The ‘variation of orbital elements’ method is described here. Other methods
such as those first proposed by Cowell and Crommelin [2] and Encke [3] are summarized
by Cornelisse er al. [4].

The method of the variation of orbital elements may be considered in the following
way. The elements referred to in the preceding section are constants for a Keplerian orbit,
as derived in Section 4.2. When perturbative forces exist, they are no longer constant but
for small forces they will change slowly.

A simple, physical model will serve to demonstrate this. Consider a spacecraft in
circular orbit about a spherically symmetrical planet possessing an atmosphere of density
pkg/m*. If it is assumed that the perturbative drag force is small, then it is to be expected
that the orbit will remain near circular. Now the velocity in a circular Keplerian orbit
is given by /(u/r). If the spacecraft’s projected area in the direction of flight is S,
then the work performed by the atmosphere as the vehicle moves round the orbit is
given by ~ —mxrpSCppu/r, where Cp is an appropriate drag coefficient for the vehicle.
Since this reduces the energy of the system, it is apparent that the energy constant & in
equation (4.21) will decrease and the orbital element @ must do so too.

The variation of orbital elements method assumes that the actual orbit of a body, at
any given instant, may be considered to have instantaneous values of Keplerian orbital
elements. These are defined so that if the perturbing forces are removed at that instant,
thus leaving only a central gravitational field whose potential is proportional to 1/r,
then the orbit will follow the Keplerian orbit that has the instantaneous orbital elements.
These are called the osculating elements. It must be emphasized that the method is only
appropriate for perturbing forces having a magnitude significantly smaller than p /r.

The normal method for so describing an orbit is with recourse to Lagrange’s planetary
equations (see e.g. Reference [5]). One Gaussian form of these is the following [6]:

da 2pr?
de — #2(1 — e2)2

de r . r r
= —sinfdS+ |1+ —|cos8T +e—T
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where S, 7, W form a triad of forces in a spacecraft-centred coordinate reference frame, §
acting radially, T transverse to S in the orbital plane and directed positively in the sense
of the spacecraft motion, and W normal to the orbit plane giving a right-handed system
of forces. Strictly speaking, these components are those of the disturbing acceleration,
though they are often referred to as components of the disturbing force.




4.4.1 Gravitational potential of the Earth

The most convenient method for describing Earth’s gravitational field outside its surface
is to use a spherical harmonic expansion [8], given by

U, A) =2 {—1 +3 [(&) o Pro(cos @)
n=2

r r

n R n
+>° (—E) (Coum €OS MA + Sy 8in 1) Py (cOS (b)J ] (4.35)
;

m=1

where U(r, ®, A) is the gravitational potential at a distance r from the centre of the
Earth and &, A are the latitude and longitude. P,,, are Legendre polynomials. J,, C,,,
and S, are dependent on the mass distribution of the body, in this case the Earth. Terms
of the form J, are called zonal harmonic coefficients: they reflect the mass distribution
of the Earth independently of longitude. C,,, and S,,, are the Earth’s tesseral harmonic
coefficients for n # m and the sectoral harmonic coefficients for n = m.

These coefficients have mainly been determined from the motion of Earth-orbiting
spacecraft. Whilst the lower-order terms were determined during the early 1960s, deter-
mination of the Earth’s gravitational field continues to be an area of active research.
Consequently there is a plethora of ‘standard’ global gravity field models, for example,
the Joint Gravity Model (JGM) series [9], of which the JGM-3 model is an example. This
gives the harmonic coefficient values to degree and order 70.

One of the major problems in determination of the higher-order terms is due to their
rapid decrease with altitude; from equation (4.35) terms decrease with (Rg/r)". How-
ever, at low altitudes there are also difficulties, since the gravity effects are difficult
to separate from other perturbations, in particular, those due to variable air drag. This
situation would be greatly improved by the launch of dedicated spacecraft missions to
determine the higher-order harmonic coefficients in the Earth’s gravity field. Promis-
ing proposals, such as the US GRAVSAT and the European ARISTOTELES missions,
were stalled in the 1990s because of fiscal problems. However, with the launch of
the CHAMP mission in July 2000, and that of other similar missions (e.g. GRACE)
soon afterwards, the prospect of significantly improved gravitational field models has
been enhanced.

Table 4.3 Magnitude of low-order J, C and S values

for Earth

JZ 1082.6 x 10_6 C21 0 Sg| 0

Jy =253 %107  Cp 1.57x107% S —0.90 x 10—2
Jo —1.62x107°  C3 219x107° §3; 0.27 x 10~
J& =023 x 1075 Gy 031 x 10784 S5 =02 10—?
Js 054x10% C3 0.10x107° S33  0.20 x107°




Regression of the line of nodes

The equatorial bulge produces a torque that rotates the angular momentum vector. For
prograde orbits (i < 90°), the orbit rotates in a westerly direction, leading to a regression
of the line of nodes as shown pictorially in Figure 4.11. Neglecting all harmonic coeffi-
cients other than J, the rate of nodal regression may be written [7] to the first order in
J2 as

o 3 LR?
Q= Qy— > SEarcosi + O[] (4.36)
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Figure 4.11 Nodal regression

where 7 is the mean angular velocity, v/(u/a?). Thus, the secular rate of nodal regression

per orbit is
37 LR}
AQ = =227 cosi radirey (4.37)
p
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Figure 5.24 The Molniya
orbit



