Università degli Studi di Firenze Dipartimento di Fisica

Marcello Carlà

Appunti di Elettronica per Fisici

A.A. 2008-2009

Copyright © 2008 2007 2006 2005 Marcello Carlà

Ogni riproduzione completa o parziale di questo documento per uso privato o collettivo è assolutamente consentita per qualunque numero di copie.

Ogni copia dovrà riportare il testo di questo Copyright o, per copie di una piccola parte del documento, almeno l'indirizzo dove è disponibile la versione completa: http://studenti.fisica.unifi.it/~carla/appunti/

Quest'opera è stata rilasciata sotto la licenza "Creative Commons Attribution-NonCommercial-ShareAlike 2.5". Per leggere il testo completo della licenza visita il sito web *http://creativecommons.org/licenses/by-nc-sa/2.5/* o invia una richiesta a Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

L'autore sarà grato a chi vorrà inviare segnalazioni di errori e/o suggerimenti. e-mail: carla@fi.infn.it

In copertina: schema elettrico del trasmettitore radio utilizzato nel maggio-giugno 1928 dal marconista Biagi per inviare i segnali di richiesta di soccorso dalla banchisa polare.

Indice

1	\mathbf{Sem}	liconduttori	1
	1.1	Semiconduttori	1
	1.2	Resistività	2
	1.3	Germanio e Silicio	2
	1.4	Elettroni e Lacune	2
	1.5	Modello a bande di energia	4
	1.6	Semiconductore estrinseco	5
	1.7	Legge di Azione di Massa	6
	1.8	Corrente di diffusione	6
2	Dio	di	9
	2.1	Giunzione <i>P-N</i>	9
	2.2	Regione di Transizione	10
	2.3	Potenziale di giunzione	10
	2.4	Diodo a giunzione	12
	2.5	Polarizzazione diretta ed inversa	12
	2.6	Correnti in un diodo polarizzato	14
		2.6.1 Polarizzazione diretta	14
		2.6.2 Polarizzazione inversa	16
	2.7	Equazione della giunzione	17
		2.7.1 Diodo in conduzione	18
		2.7.2 Diodo in interdizione	18
	2.8	Contatti ohmici	20
	2.9	Coefficiente di temperatura del diodo a giunzione	20
	2.10	Una applicazione dei diodi: il raddrizzatore	21
	2.11	Tensione inversa di rottura (<i>Reverse Breakdown Voltage</i>)	22
	2.12	Effetti termici nel diodo	23
	2.13	Circuiti non lineari	24
	2.14	Circuito linearizzato	25
	2.15	Conduttanza dinamica del diodo	27
		2.15.1 Diodo direttamente polarizzato	27
		2.15.2 Diodo non polarizzato	28
		2.15.3 Diodo contropolarizzato	28
	2.16	Diodi stabilizzatori di tensione	28
	2.17	Interruttore a diodi per segnali analogici	29
	2.18	Capacità della giunzione	31

		2.18.1 Diodo contropolarizzato - Capacità di transizione		31
		2.18.2 Diodo in conduzione - Capacità di diffusione		33
		2.18.3 Confronto tra capacità di transizione e capacità di diffu	sione .	34
	2.19) Spessore della regione di transizione		35
	2.20) Tempi di commutazione di un diodo		36
	2.21	Dispositivi Optoelettronici		38
		2.21.1 Fotodiodi		38
		2.21.2 Relazione tensione-corrente in un fotodiodo		39
		2.21.3 Rendimento dei generatori fotovoltaici		40
		2.21.4 Fotorivelatori		40
		2.21.5 Diodi led (light emitting diode - diodi emettitori di luce		41
		2.21.6 Diodi laser		42
3	Am	plificazione		43
	3.1	Circuiti attivi		43
	3.2	Amplificatore ideale		43
	3.3	Variabili indipendenti e dipendenti		45
	3.4	Modelli lineari per i dispositivi a due porte		45
	3.5	Trasferimento diretto ed inverso		47
4	Il tr	ransistor <i>bjt</i>		49
	4.1	Equazioni di Ebers-Moll		49
	4.2	Regioni operative del bjt		51
		4.2.1 Regione di interdizione		51
		4.2.2 Regione attiva		51
		4.2.3 Regione di saturazione		52
	4.3	Configurazioni circuitali		52
		4.3.1 base comune $(common \ base)$		52
		4.3.2 emettitore comune (common emitter) \ldots		53
		4.3.3 collectore comune (<i>common collector</i>) \ldots \ldots \ldots		53
	4.4	Curve caratteristiche		53
	4.5	Effetto Early		54
	4.6	Amplificatore ad emettitore comune		54
		4.6.1 Modello lineare a emettitore comune		56
		4.6.2 Valori dei parametri $g \text{ ed } h \dots \dots \dots \dots \dots$		57
		4.6.3 Amplificazione di tensione e di corrente		58
		4.6.4 Parametri di uscita e trasferimento inverso		59
		4.6.5 Resistenze di ingresso e di uscita		59
	4.7	Amplificatore a collectore comune		60
		4.7.1 Emitter follower		60
		4.7.2 Reazione di emettitore		62
	4.8	Amplificatore a base comune		63
	4.9	La polarizzazione del bjt		63
		4.9.1 Polarizzazione con singola resistenza di base		64
		4.9.2 Polarizzazione a quattro resistenze		65
		4.9.3 Condensatori di accoppiamento e disaccoppiamento .		67
	4.10) Amplificatore differenziale		68

		4.10.1	Amplificazione di modo comune					69
		4.10.2	Amplificazione di modo differenziale					70
		4.10.3	Un esempio di amplificatore differenziale					71
		4.10.4	Reiezione di modo comune					72
	4.11	Circuit	o current mirror					73
	4.12	Circuit	o Darlington					74
	4.13	Circuit	i a simmetria complementare					74
	4.14	Il trans	sistor bjt in alta frequenza					76
		4.14.1	Frequenza di transizione					77
		4.14.2	Effetto Miller					78
		4.14.3	Banda passante di un amplificatore		• •		•	78
5	I tra	ansisto	r mosfet e jfet					81
	5.1	Struttu	$ ra del transistor mosfet \ldots \ldots$				•	81
	5.2	Canale	di conduzione					82
	5.3	Condu	ttanza del canale				•	84
	5.4	Modula	azione del canale					86
	5.5	Pinch-	off				•	87
	5.6	Curve	caratteristiche per il transistor $nmos$				•	88
	5.7	Il trans	sistor pmos - mosfet complementari					89
	5.8	Transis	stor mosfet di tipo enhancement e depletion				•	89
	5.9	Struttu	$ \text{ transistor } jfet \dots \dots \dots \dots \dots \dots \dots \dots \dots $				•	90
	5.10	Modula	azione della corrente di canale nel transistor jfet .				•	91
	5.11	Varietà	a di transistor ad effetto di campo $\ldots \ldots \ldots$				•	92
	5.12	Circuit	i con transistor ad effetto di campo				•	92
		5.12.1	Amplificatore common source				•	92
		5.12.2	Modello per piccoli segnali per i transistor ad effe	tto di	can	npo		94
		5.12.3	I transistor fet in alta frequenza	•••	• •	•••	•	95
6	Elet	tronica	a digitale					97
	6.1	Algebra	a di Boole		• •		•	99
		6.1.1	Operazioni logiche elementari		• •		•	99
		6.1.2	Circuiti logici elementari (porte)		• •		•	99
		6.1.3	Le leggi di De Morgan		• •		•	100
		6.1.4	$NAND \in NOR \dots \dots$				•	102
	6.2	Il trans	sistor come interruttore		•••		•	102
	6.3	Le fam	iglie logiche		• •		•	103
		6.3.1	Famiglia CMOS		• •		•	105
		6.3.2	Porta $NAND$ e NOR in tecnologia CMOS				•	107
		6.3.3	Famiglia $TTL \ldots \ldots \ldots \ldots \ldots \ldots$				•	108
		6.3.4	Caratteristiche elettriche di famiglie $CMOS$ e TT	L			•	110
	6.4	Logica	$combinatoria \ \ \ldots $				•	110
		6.4.1	Esempi di circuiti a logica combinatoria				•	111
	6.5	Tempi	di commutazione				•	113
	6.6	Logica	sequenziale				•	114
	6.7	I flip-fl	lop				•	115
		6.7.1	Set-Reset (SR)					115

v

INDICE

		6.7.2	Clocked- SR	. 117
		6.7.3	D-type	. 117
	6.8	I flip-fl	lop di tipo Master-Slave	. 118
		6.8.1	Shift register (Registro a scorrimento)	. 119
		6.8.2	Flip-flop JK	. 120
		6.8.3	Contatore binario	. 121
		6.8.4	Contatore sincrono	. 122
7	Ane	ello di 1	reazione (feedback loop)	125
	7.1	Guada	agno ad anello aperto e ad anello chiuso	. 126
	7.2	Reazio	one positiva	. 127
	7.3	Reazio	one negativa	. 127
	7.4	L' Am	plificatore Operazionale ideale	. 128
		7.4.1	Amplificatori Operazionali reali	. 128
	7.5	Ampli	ficazione	. 129
		7.5.1	Amplificatore non invertente	. 129
		7.5.2	Effetti della reazione negativa	. 129
		7.5.3	Amplificatore invertente	. 132
		7.5.4	Nodo di somma	. 132
		7.5.5	Amplificatore vero differenziale	. 132
		7.5.6	Instrumentation Amplifier	. 132
		7.5.7	Integratore	. 133
		7.5.8	Differenziatore	. 133
		7.5.9	Convertitore corrente-tensione	. 134
		7.5.10	Convertitore tensione-corrente	. 134
		7.5.11	NIC (Negative impedance converter)	. 134
		7.5.12	Generatore di corrente (Pompa di Howland)	. 134
		7.5.13	Calcolatore Analogico	. 134
8	Stal	bilità d	lelle reti lineari	135
-	8.1	Reti li	neari	. 137
	8.2	Calcol	o operazionale e impedenze complesse	. 139
	8.3	Alcune	e proprietà generali delle reti lineari	. 140
		8.3.1	Analisi per maglie di una rete lineare	. 140
	8.4	Imped	enza ed ammettenza di ingresso e di trasferimento	. 141
	8.5	Teoren	na di reciprocità	. 142
	8.6	Genera	atori controllati. Reti lineari non reciproche	. 143
	8.7	Condiz	zione di stabilità per una rete lineare	. 143
	8.8	Rispos	sta di transitorio	. 144
\mathbf{A}	Am	plificat	tore con transistor bjt	147
R	Een	orionza	e di Laboratorio	151
	чан	01101120		TOT

Capitolo 1

Semiconduttori

1.1 Semiconduttori

Con il termine *semiconduttori* si indicano alcuni elementi delle colonne III, IV e V della tavola periodica, caratterizzati da una resistività elettrica ρ intermedia tra quella molto bassa dei conduttori e quella estremamente elevata degli isolanti (fig. 1.1). I

Figura 1.1: Semiconduttori.

semiconduttori possono essere composti da una singola specie atomica della quarta colonna (semiconduttori *elementali*: Si, Ge) oppure possono essere combinazioni degli elementi delle colonne III e V oppure II e VI (semiconduttori composti).

1.2 Resistività

La grandissima differenza di resistività che si osserva tra conduttori, semiconduttori e isolanti è dovuta principalmente alla differente concentrazione in volume dei portatori di carica. Infatti la densità di corrente di conduzione \mathbf{J} , dovuta al moto di deriva dei portatori in presenza di un campo elettrico \mathbf{E} , per i conduttori ohmici, è:

		$\mathbf{J} = \text{densità di corrente } (A \ m^{-2)}$
		$n = $ Concentrazione dei portatori (m^{-3})
$\mathbf{J} = n \ q \ \mu \mathbf{E}$	(1.1)	q = Carica dei portatori (C)
$n q \mu = \sigma = \rho^{-1}$	(1.2)	$\mu = \text{Mobilità}$ dei portatori $(m^2 \ V^{-1} \ s^{-1})$
	~ /	$\sigma = $ Conducibilità del materiale ($\Omega^{-1} m^{-1}$)
		$\rho = \text{Resistività del materiale } (\Omega \ m)$

La mobilità μ differisce relativamente poco tra materiali diversi, mentre la concentrazione dei portatori di carica tra isolanti e conduttori spazia su oltre 20 ordini di grandezza (10¹ ... 10²² cm⁻³). Nei semiconduttori si colloca, su scala logaritmica, a metà di questo intervallo (fig. 1.2).

Figura 1.2: Concentrazione dei portatori di carica per alcuni materiali (cm^{-3}) . Sotto i nomi sono riportate le mobilità di elettroni (μ^{-}) e *lacune* (μ^{+}) $(m^{2}/V \cdot s)$.

1.3 Germanio e Silicio

Il Germanio è stato utilizzato per la produzione di dispositivi elettronici (diodi e transistor) soprattutto negli anni '50 e '60; successivamente è stato sostituito dal Silicio. Attualmente con il Silicio è realizzata la grandissima maggioranza dei dispositivi a semiconduttore (fig. 1.3).

Germanio e Silicio appartengono alla IV colonna della tavola periodica, sono tetravalenti e formano cristalli con reticolo tetraedrico. In figura 1.4 è riportata una proiezione in piano del reticolo cristallino tridimensionale, in cui ogni atomo forma quattro legami covalenti con i quattro atomi primi vicini.

1.4 Elettroni e Lacune

Nella figura 1.4a è schematizzata la situazione del reticolo cristallino alla temperatura dello zero assoluto: tutti gli elettroni di valenza risultano stabilmente impegnati nei rispettivi legami; non esistono elettroni liberi all'interno del reticolo e quindi il

Figura 1.3: Dispositivi a semiconduttore al Germanio ed al Silicio. Da sinistra: tre transistor al germanio; un diodo al silicio per piccoli segnali, uno di media potenza ed uno di potenza; due transistor al silicio per piccoli segnali ed uno di potenza; un circuito integrato digitale ed un microprocessore.

Figura 1.4: Semiconductore intrinseco. a) Allo zero assoluto non ci sono nel reticolo portatori di carica disponibili; b) a temperature maggiori dello zero assoluto alcuni elettroni si rendono disponibili come elettroni di conduzione.

cristallo è un isolante perfetto. La situazione cambia per temperature diverse dallo zero assoluto: ogni elettrone ha una probabilità piccola ma finita di uscire dalla buca di potenziale corrispondente al legame covalente e trovarsi nel reticolo, disponibile come elettrone di conduzione (figura 1.4b).

Per ogni elettrone che abbandona il proprio legame covalente si formano due cariche libere: una carica negativa (l'elettrone) ed una positiva (la *lacuna*, cioè la carica positiva rimasta scoperta nel reticolo a seguito dell'allontanamento dell'elettrone). Le lacune sono portatori di carica a tutti gli effetti e danno un contributo al trasporto di carica indipendente da quello degli elettroni di conduzione. In fig. 1.5 una lacuna si trova in A; un elettrone di valenza salta da B in A; la lacuna in A scompare e riappare in B: apparentemente la lacuna si è spostata da A a B. In realtà sono sempre gli elettroni che si muovono, ma poiché si tratta di elettroni di valenza questo meccanismo fornisce un movimento di carica indipendente da quello degli elettroni di conduzione.

Figura 1.5: Movimento delle lacune: una lacuna si trova in A; un elettrone di valenza salta da B in A; la lacuna in A scompare e riappare in B.

Lacune ed elettroni si generano continuamente a coppie in seguito alla rottura di legami covalenti per effetto della agitazione termica e scompaiono a coppie, quando una lacuna ed un elettrone si ricombinano a riformare un legame covalente. Di conseguenza nel semiconduttore *intrinseco* (cioè non *drogato*, come si vedrà più avanti) la concentrazione delle lacune (p) sarà sempre eguale a quella degli elettroni (n). Il valore n_i di p ed n, detto *concentrazione intrinseca*, è determinato dall'equilibrio dinamico tra generazione e ricombinazione e dipende dalle caratteristiche del materiale semiconduttore e dalla temperatura T:

$$n_i^2 = n^2 = p^2 = B \ T^3 e^{-E_G/kT} \tag{1.3}$$

dove E_G è l'energia di rottura di un legame covalente, k la costante di Boltzmann e B una costante caratteristica del materiale. La concentrazione intrinseca n_i aumenta rapidamente con la temperatura e questo aumento è la causa della forte diminuzione della resistività dei semiconduttori con il riscaldamento (a differenza dei metalli, la cui resistività cresce con la temperatura).

1.5 Modello a bande di energia

Una descrizione accurata dei meccanismi di trasporto nei semiconduttori si può avere solo facendo uso della meccanica quantistica, tramite la teoria delle bande (banda di conduzione e di valenza) ed esula dallo scopo di queste note. Qui è sufficiente utilizzare i risultati che descrivono fenomenologicamente tali meccanismi. Il risultato più importante è costituito proprio dal fatto che in un semiconduttore si ha un doppio meccanismo di conduzione, legato alla presenza di portatori di carica negativi (gli elettroni di conduzione) e positivi (le lacune), che portano ciascuno una unità di carica elettronica q di segno opposto. In un metallo invece gli unici portatori di carica sono gli elettroni. In presenza di un campo elettrico si stabilisce quindi una corrente di deriva (*drift current*) con densità **J**:

Metalli	Semiconduttori			
$\mathbf{J} = q \ n \ \mu_n \ \mathbf{E}$	$\mathbf{J} = q \ (\ n \ \mu_n + \ p \ \mu_p \) \ \mathbf{E}$	(1.4)		
$\sigma = q \ n \ \mu_n$	$\sigma = q \ (\ n \ \mu_n + \ p \ \mu_p \)$	(1.5)		

Le caratteristiche chimico-fisiche principali alla base delle proprietà di conduzione di Silicio e Germanio intrinseco sono riportate in tabella 1.1.

		Ge	Si	
numero atomico		32	14	
peso atomico		72.6	28.1	
densità		5.32	2.33	g/cm^3
densità atomica		$4.4 \cdot 10^{22}$	$5 \cdot 10^{22}$	$atomi/cm^3$
costante dielettrica relativa		16	12	
Energia di legame (bandgap)	E_G	0.72	1.1	eV
concentrazione intrinseca	n_i	$2.5 \cdot 10^{13}$	$1.5 \cdot 10^{10}$	cm^{-3}
$1/n_i \cdot \mathrm{d}n_i/\mathrm{d}T$		16	10	$\%/^{\circ}K$
frazione portatori/legami		$0.14 \cdot 10^{-9}$	$0.75 \cdot 10^{-13}$	
resistività	ρ	0.45	2300	$\Omega \cdot m$
mobilità degli elettroni	μ_n	0.38	0.19	$m^2/V \cdot s$
mobilità delle lacune	μ_p	0.18	0.05	$m^2/V \cdot s$
coeff. di diffusione degli elettroni	D_n	$9.9 \cdot 10^{-3}$	$3.4 \cdot 10^{-3}$	m^2/s
coeff. di diffusione delle lacune	D_p	$4.7 \cdot 10^{-3}$	$1.3 \cdot 10^{-3}$	m^2/s

Tabella 1.1: Principali caratteristiche chimico-fisiche di Germanio e Silicio intrinseco a temperatura ambiente $(300^{\circ}K)$.

1.6 Semiconductore estrinseco

Si ha un semiconduttore estrinseco o drogato quando piccole quantità di atomi di elementi trivalenti (es.: boro, gallio, indio) o pentavalenti (es.: antimonio, fosforo, arsenico) vengono sostituite nel reticolo cristallino agli atomi originali del semiconduttore, Germanio o Silicio (fig.1.6). La frazione di atomi sostituiti tipicamente è compresa nell'intervallo $10^{-3} \dots 10^{-9}$, per cui le proprietà chimico-fisiche del reticolo cristallino rimangono sostanzialmente inalterate. Gli atomi estranei si sostituiscono a quelli del semiconduttore originale e portano nel reticolo un eccesso di un elettrone, nel caso degli elementi pentavalenti (atomi donatori, drogaggio di tipo N), o un difetto di un elettrone, cioè una lacuna nel caso degli elementi trivalenti (atomi accettori, drogaggio di tipo P).

In entrambi i casi ci troviamo ad avere inserito portatori di carica liberi nel cristallo: gli elettroni in eccesso portati dal drogaggio N hanno una energia di legame con il proprio atomo sufficientemente bassa da trovarsi già a temperatura ambiente tutti disponibili come elettroni di conduzione, e quindi come portatori di carica negativa; analogamente le lacune portate dal drogaggio di tipo P costituiscono altrettanti portatori di carica positivi.

Semiconduttore di tipo N.

Il drogaggio con atomi pentavalenti (donatori) genera un eccesso di elettroni di conduzione ed un reticolo di cariche positive fisse.

Semiconduttore di tipo P. Il drogaggio con atomi trivalenti (accettori) genera un eccesso di lacune ed un reticolo di cariche negative fisse.

⊚+	Lacuna.
	Elettrone

Figura 1.6: Modello di semiconduttore estrinseco

1.7 Legge di Azione di Massa

L'aumento della concentrazione di uno dei due tipi di portatori n o p nel reticolo in seguito al drogaggio porta conseguentemente una diminuzione della concentrazione dell'altro portatore. Infatti la probabilità di ricombinazione delle coppie lacunaelettrone è legata al prodotto $n \cdot p$ delle due concentrazioni, mentre la probabilità di generazione di nuove coppie per effetto della agitazione termica è legata alla concentrazione di legami non ionizzati e quindi rimane sostanzialmente costante anche in seguito al drogaggio. Questo equilibrio è riassunto nella *legge di azione di massa*:

$$n \cdot p = n_i^2(T) \tag{1.6}$$

Nell'intervallo di drogaggi usati abitualmente si ha, indicando con N_A ed N_D rispettivamente la concentrazione di atomi accettori e donatori:

semiconduttore P: $N_A \gg n_i$ $p_p \simeq N_A$ $n_p = n_i^2/N_A$ semiconduttore N: $N_D \gg n_i$ $n_n \simeq N_D$ $p_n = n_i^2/N_D$

Con $p_p \in n_n$ sono state indicate le concentrazioni di lacune ed elettroni nelle regioni rispettivamente di tipo P ed N; questi sono i *portatori maggioritari*, in quanto presenti nella regione in quantità preponderante. I simboli $n_p \in p_n$ indicano invece le concentrazioni dei *portatori minoritari*: l'altra specie di portatori, la cui concentrazione risulta fortemente depressa a causa della abbondante presenza dei maggioritari (fig. 1.7).

1.8 Corrente di diffusione

Nei semiconduttori il trasporto di carica avviene come moto di deriva dei portatori per effetto del campo elettrico (corrente di conduzione), analogamente a quanto avviene

Figura 1.7: Livelli di drogaggio nei semiconduttori al silicio e concentrazioni dei portatori a temperatura ambiente.

nei metalli. Oltre a questo meccanismo ve ne è un secondo, legato alla diffusione, che invece è irrilevante nel caso dei metalli: un gradiente di concentrazione dei portatori di carica dà origine ad un moto di diffusione e quindi ad una densità di corrente elettrica di lacune $(\mathbf{J}_{\mathbf{p}})$ e di elettroni $(\mathbf{J}_{\mathbf{n}})$ anche in assenza di un campo elettrico:

$$\mathbf{J}_{\mathbf{p}} = -qD_p \nabla p \qquad \qquad \mathbf{J}_{\mathbf{n}} = qD_n \nabla n \qquad (1.7)$$

La densità di corrente totale \mathbf{J} è data dalla somma dei contributi di conduzione e diffusione per entrambi i tipi di portatori:

$$\mathbf{J}_{\mathbf{p}} = q \ \mu_p \ p \ \mathbf{E} - q \ D_p \ \nabla p \qquad \qquad \mathbf{J}_{\mathbf{n}} = q \ \mu_n \ n \ \mathbf{E} + q \ D_n \ \nabla n \qquad (1.8)$$

$$\mathbf{J} = \mathbf{J}_{\mathbf{p}} + \mathbf{J}_{\mathbf{n}} \tag{1.9}$$

I coefficienti di diffusione D_p , D_n e le mobilità μ_p , μ_n sono legati dalla relazione di Einstein:

$$\frac{D_p}{\mu_p} = \frac{D_n}{\mu_n} = V_T = \frac{kT}{q}.$$
 (1.10)

A temperatura ambiente $V_T \simeq 26 \ mV$.

CAPITOLO 1. SEMICONDUTTORI