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COSMIC Rays



Millikan Theory
Cosmic Rays (as Millikan called them) are gamma rays
as the birth cry of elements heavier than hydrogen

Millikan found that the absorption curve of CR was not  compatible 
with one absorption length, but rather could be fit with a combination 
of three absorption lengths: 300, 1250 and 2500 g/cm2, corresponding, 
according to Compton Theory to gamma ray energies of 26, 110 and 
220 MeV

4 p → He       ΔM=27 MeV       OK
14 p → N       ΔM=108 MeV     OK
12 p  C→ Δ M =85 M eV         ?
16 p → O       ΔM=129 MeV     OK  
28 p →Si ΔM=150 MeV      M ay be



But birth cries do not go through lead!

Bruno Rossi had performed several experiments with his
coincidence Geiger counters and found that CR could 
penetrate even 1m of lead
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And
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> GeV



Definitely charged…

Dimitr S kobelzyn: picture of cosmic ray
event in cloud chamber with B-field (1927)



• 1930: B. Rossi in Arcetri predicts 
the East-West effect

• 1932: Carl Anderson discovers the 
positron in CR

• 1934: Bruno Rossi detects 
coincidences even at large distance 
from the center...first evidence of 
extensive showers!

• 1937: Seth Neddermeyer and Carl 
Anderson discover the muon 

• 1938-39: Auger detects first 
extensive air showers with energy 
up to 1013-14 eV

• 1940’s: Boom of particle physics 
discoveries in CR

• 1962: UHECRs by Linsley & Scarsi



The Spectrum of Cosmic Rays
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The Chemical Composition of Cosmic 
Rays
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Unstable Elements
Simpson and Garcia-Munoz 1988

Balloon flights 
For Cosmic Rays

Laboratory
Experiment
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Age of Cosmic 
Rays  about 
10-15 million years



Il Nostro Posto Nell’Universo



100000 anni luce

Sole



PROPAGATION OF COSMIC RAYS
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ALL THESE TIME SCALES ARE EXCEEDINGLY SHORT TO BE
MADE COMPATIBLE WITH THE ABUNDANCE OF LIGHT 
ELEMENTS

DIFFUSIVE 
PROPAGATION



A qualitative look at the diffusive 
propagation of CR
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If λ is the mean distance between two scattering centers, then the time 
necessary for a particle to travel a distance R is

Mean distance between
Scattering centers

From the measured abundance of light elements and from the decay time of
Unstable elements we know that the diffusion time on scales of about 1 kpc 
Must be about 5 million years. It immediately follows that

12 2810 10)-5( c  −× = = scmD λ
Diffusion
Coefficient



More detailed measurements
Swordy et al. 1990



Swordy et al. 1990 RATIO SECONDARY/PRIMARY
AND PRIMARY/PRIMARY



RECENT DATA



CREAM data (2008)



Dependence of the Diffusion Coefficient 
on energy 
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From the previous plot we see that at low energies P/S ~ 0.1 which implies
X(E) ~ 5 g cm-2
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Sources of Cosmic Rays
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Sources of Cosmic Rays
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The total energy in the form of CR in the Galaxy is then

But we said that the permanence time  of CR in the Galaxy as  obtained from
The abundance of light elements and from the decay of unstable elements is
About 10 million years. Therefore the CR luminosity of the Galaxy is
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The role of supernovae
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In the Galaxy the rate of supernovae is of about one every 100 years. The 
total energy released by a SN (included the one in the form of neutrinos)
is

                                      for a star of one solar mass.

Tipically 1% of this energy is converted in the form of kinetic energy of 
Ejected material: Ekin ~ 1051 erg.

This corresponds to:
-141

 SNSN s erg 10 3  R  L ×≈= kinE

Efficiency of conversion to CR ~  10-20 %

BUT HOW DOES THIS CONVERSION OCCUR? 



COSMIC RAY TRANSPORT

C HAR G E D PAR TIC LES
IN  A  M AG N E TIC  FIE LD

D IFFU S IV E  PAR TIC LE
AC C E LE R ATION  
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PR OPAG ATION  IN  TH E
G ALAX Y  AN D OU TS IDE



Charged Particles in a regular B-
field
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In the absence of an electric field one obtains 
the well known solution:
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LARMOR FREQUENCY



A FEW NOTES…

• THE MAGNETIC FIELD DOES NOT 
CHANGE PARTICLE ENERGY -> NO 
ACCELERATION BY B FIELDS 

• A RELATIVISTIC PARTICLE MOVES 
IN THE Z DIRECTION ON AVERAGE 
AT C/3



Motion of a charged particle in a 
random magnetic field
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THIS CHANGES ONLY
THE X AND Y COMPONENTS
OF THE MOMENTUM

THIS TERM CHANGES
ONLY THE DIRECTION
OF PZ=Pμ



SITTING IN THE REFERENCE FRAME OF THE THE WAVE,
THERE IS NO ELECTRIC FIELD…AND IF THE WAVE IS 
SLOW COMPARED WITH THE PARTICLE (THIS IS 
GENERALLY THE CASE) THEN THE WAVE IS STATIONARY 
AND Z=vμt 

RATE OF CHANGE OF THE PITCH ANGLE IN TIME



Diffusive motion

ONE CAN TRIVIALLY SHOW THAT

BUT: 

0
dt
d =µ



Many waves
IN GENERAL ONE DOES NOT HAVE A SINGLE WAVE BUT RATHER 
A POWER SPECTRUM: 

THEREFORE INTEGRATING OVER ALL OF THEM:

OR IN A MORE IMMEDIATE FORMALISM:
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DIFFUSION COEFFICIENT
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THE RANDOM CHANGE OF THE PITCH ANGLE IS
DESCRIBED BY A DIFFUSION COEFFICIENT
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THE DEFLECTION ANGLE CHANGES BY ORDER UNITY
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PARTICLE SCATTERING

• EACH TIME THAT A RESONANCE OCCURS THE 
PARTICLE CHANGES PITCH ANGLE BY Δθ~δB/B 
WITH A RANDOM SIGN

• THE RESONANCE OCCURS ONLY FOR RIGHT 
HAND POLARIZED WAVES IF THE PARTICLES 
MOVES TO THE RIGHT (AND VICEVERSA)

• THE RESONANCE CONDITION TELLS US THAT 1) 
IF k<<1/rL PARTICLES SURF ADIABATICALLY AND 
2) IF k>>1/rL PARTICLES HARDLY FEEL THE 
WAVES



PARTICLE
ACCELERATION



A quick look at 2nd order Fermi 
Acceleration (Fermi, 1949)
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Morte di una stella…

  Vita di un universo…

SN1987a





VELOCITA’ DEL SUONO IN ARIA
311 metri al secondo = 
1100 km/h



VELOCITA’ DEL SUONO NEL MEZZO INTERSTELLARE
36000 km/h

Esplosione:
5000 km/s=
18 milioni di km/h



A PRIMER ON SHOCK WAVES
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For σ~10 -25 cm2 and density n~1 cm-3 the typical interaction length
is ~3 Mpc >> than the typical size of astrophysical objects and even
Larger than the Galaxy!!!

COLLISIONLESS SHOCKS
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STATIONARY SHOCKS

3M
4M

ρ
ρ

2

2

1

2

+
=

4
1M

4
5

p
p 2

1

2 −=

2

22

1

2

3
8

2
3
2

3
2

3
10













 +





 −

=
M

MM

T
T

4

8
6 2

11
2

up ρ=

2
12 16

3 muT =

M→∞

M→∞

M→∞
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BOUNCING BETWEEN 
APPROACHING MIRRORS
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FIRST ORDER

A FEW IMPORTANT POINTS:

I . There are no c onfig urations  that lead to los s es

I I .  The mean energ y g a in is  now  firs t order in V

I I I . The energ y g a in is  bas ic a lly independent of any deta il 
       on how  partic les  s c a tter bac k and forth!



RETURN PROBABILITIES AND SPECTRUM 
OF ACCELERATED PARTICLES
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E N E R G Y  G A IN : 
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Putting  thes e tw o expres s ions  tog ether w e g et:

Therefore:

[ ]




 −+










=
−










=
)(

3
41ln

ln

41ln

ln

21

0

2

0

UU

E
E

U
N
N

K

KK

γ−







=>

0
0)(

E
ENEN K

K 1
3
−

=
r

γ
2

1

U
Ur =

THE SLOPE OF THE DIFFERENTIAL SPECTRUM WILL
BE γ+1=(r+2)/(r-1)  2→  FOR r→4 (STRONG SHOCK)



PROPAGATION OF EXTRAGALACTIC 
COSMIC RAYS

−+ ++→+ ee  p γp  
CMB

ON  C OS M OLOG IC AL TIM E  S C ALES  THE R E  AR E  THR EE  PR OC E S S ES  THAT AR E  R ELE V AN T 
FOR  PR OPAG ATION

AD IAB ATIC  LOS S E S  DU E  TO 
THE  E X PAN S ION  OF THE  U N IV ER S E

B E THE -HE ITLER  PA IR  PR ODU C TION

PHOTOPION  PR ODU C TION

++→+ πγ nCMBp

0
CMBp πγ +→+ p



100 Mpc

GZK

LOSS TIME                      LOSS LENGTH



Spectrum of UHECRs: case of protons

Solid: γ=2.6  m=0  Emax=1021eV
Dashed: γ=2.6  m=0 Emax=1020eV
Dotted: γ=2.4  m=4 Emax=1021eV

Q(E,z)~E-γ (1+z)m exp(-E/Emax)
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