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Introduction
The purpose of this experiment is two-fold:

{a) to give experience with experimental techniques which are widely applicable in spectroscopy;
{b) to investigate the spectrum and energy level structure of atomic hydrogen.

Your write up should include brief accounts of the various observations made and answers to the
calculations and questions posed. If you do not understand any section of this manuscript please ask a
demonsirator for help and advice.

Before you start the experiment a demonstrator will go through the important points and explain the
optical system of the monochromator, You should then read through sections 2, 3 and 4 before
beginming the setting-up procedure described in section 5.

Spectroscopes and monochromators
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Figure1 A simple spectroscope. Note that here, as in all practical instruments, the grating consists not
of slits but reflecting strips, that is, it works in reflection not transmission
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Grating monochromator

When a collimated beam of light of wavelength 1 is incident on a reflection grating at an angle ¢,
constructive interference occurs in beams diffracted at the angles B which satisfy the equation

d(sino sinf) =pAd (L)

as shown in Figure 1. The order number p is usually a small integer and 4 is the spacing of the grating
rulings; the +ve sign is used when the incident and diffracted beams are on the same side of the grating
normal, and the —ve sign when they are on opposite sides of the normal. In a grating spectroscope a
system of lenses, forming a collimator and telescope, is used to produce an image of a fine entrance slit,
When this slit is illuminated by light containing several different wavelengths then, due to constructive
interference of light diffracted by the grating, the variously coloured images of the slit are formed at
different angles. When the slit is narrow these images appear as bright lines on a dark background and
are known as spectral lines. These lines are characteristic of the chemical composition of the source.
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Figure 2 Czerny-Turner Monochromator

For the analysis of spectra and the determination of the spacing of atomic and molecular energy levels
the highest possible accuracy in wavelength measurement is required. This is usually achieved by
employing large spectrographs in which the spectra are recorded photographically. However in many
experiments we want to study a line of which the wavelength is already known (for example, to see
how its intensity varies with discharge conditions). Under these circumstances the wavelength
measurement need only be made with sufficient accuracy to enable the line to be identified
unambiguously. Thus for research purposes a less precise but more compact instrument is often more
convenient. It is also desirable that the wavelength of the spectral line of interest can be determined
directly from a scale or dial reading. All of these advantages are found in the Czerny-Turner
monochromator on which this experiment is based.
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The Czerny-Turner monochromator

In the Czerny-Turner monochromator concave mirrors are used to collimate the beam of light falling
on the grating and to focus those beams diffracted from the grating, as shown in Figure 2. This means
that the working range of the instrument is not restricted by the limited transmission of glass lenses in
the ultra-violet region and moreover that there is no chromatic aberration. The grating is rotated by an
arrangement known as a sine-bar which is driven by a large micrometer. The operation of the sine-bar
is described more fully in section 4; it consists of a lever mechanism in which linear displacement by
the micrometer is made proportional to the sine of the angle between the grating normal and the
symmetry axis of the instrument. An approximate value of the wavelength of any spectral line in
Angstrom units may, in this instrument, be obtained by doubling the micrometer reading,
(1 A=10"nm =101 m. You must get used to working in both A and nm in spectroscopic work!).
Other important design parameters of these instruments are given below.

Grafing size 48 mm % 48 mm
Ruling frequency (1/4) 1200 lines per mm
Mirror diameter 63.5 mm (2.5 inches!)
Mirror radius of curvature 439 mm
Czerny-Turner angle, ¥ 25° 287
Length of sine-bar, | 75.24 mm

Theory
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We return to equation (1) which gives the relation between the angles of incidence and diffraction
& and fi respectively, the grating spacing 4, and the wavelength A and order number p.

d(sine +sinf)=pA.
It may be rewritten in terms of the Czerny-Turner angle ¥ (which is constant and determined by the
mirror geometry) and the variable angle 8 between the grating normal and the symmetry axis of the
instrument. The result is
pi

inf= .
sm 2dcosy

@

We apply this to the present set-up in Figure 3a
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The grating is rotated by a lever arm of length I which is moved by the linear displacement z of the
micrometet, as shown in Figure 3b. Hence we also have

sinf=z/1. 3
Combining equations (2) and (3) we have
1= Z(chosy] . @
pl

2dcosy
[
(b) How large is the grating period 4 compared with a typical optical wavelength?

(a) Using the data given above, calculate the combination

Thus the wavelength of light transmitted through the monochromator is a linear function of the
displacement z produced by the micrometer drive. This simple proportionality is very convenient for
setting on a given line to moderate accuracy. However, in practice, the sine bar drive cannot be relied
upon to the precision of which the instrument is capable, so in the present experiment a calibration
spectrum is used (section 6).

Focusing and alignment procedure

Focusing of colfimator

In order to illuminate the grating with a parallel beam of light it is necessary to adjust the entrance slit
to be at the focus of the collimating mirror. To perform this adjustment, first rotate the grating so that
the zerc-order is transmiited through the instrument. Check the micrometer reading is set to zero when
zero order coincides with the cross-wire of the eyepiece. Then rotate the grating to approximately 3200
on the micrometer. In this position the angle that the grating normal makes with the axis of the
instrument is approximately equal to ¥ Thus the zero order of the grating is reflected back towards the
entrance aperture. Slacken the brass lock-screw and take out the slit. Now find the focal point of the
collimating mirror by the no-parallax method (see Figure 4 opposite) using a steel needle held in a stand
as the object. The side of the needle facing the monochromator should be illuminated by a small lamp.
Having found the focus you need to get the slit into this position. Replace it so that it coincides
approximately with this focal point and open it to its widest setting. Then carry out the no-parallax
procedure on the slit using its back-reflected image. When you have done this, tighten the brass lock
screw ensuring that the slit is vertical. Then find the position of the grating at which the back-reflected
image coincides exactly with the slit. Record the micrometer reading, and using equation (3), determine
the Czerny-Turner angle. Check that your result is close to the value given in section 3.
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l

Physical situation shown from above, with three viewing angles

B

Appearance to the eye when viewed from the three directions

Figure 4 Parallax. When two visible entities are at different distances from an observer, their apparent
alignment will depend on the direction from which they are viewed. This is called parallax.
If there is parallax between the entrance slit and its image in the collimating mirror (back-
reflected from the grating), then the focusing is incorrect and therefore the light is not
properly collimated at the grating. If there is parallax between the output spectral line and the
cross-hair, then the measured readings will fluctuate owing to change in the viewing angle of
the observer.

Alignment of the source

The next fask is to illuminate the instrument properly using a mercury lamp and condensing lens. Two
conditions need to be fulfilled:

(@) The lamp and lens must be on the optic axis of the collimating system.
(b) There must be a sharp image of the lamp on the slit.

There is in most spectroscopic work a third condition, which is to fill the grating with light by making
sure the angle the lens subtends at the slit is large enough. This makes full use of the resolving power
of the grating and the light-gathering ability of the instrument. However, if this is done in the present
experiment aberrations become a problem, and it is best instead to form an image of the source on the
slit with approximately unit magnification. The grating is then not completely filled with light, but this
is not serious provided that we satisfy conditions (a) and (b). Proceed as follows. Adjust the height of
the lens by putting it close to the slit. Switch the mercury lamp on and form an image of it on the slit
with approximately unit magnification (that is, the distance of the lamp from the lens is roughly equal
to that from the lens to the slit). To do this, you will need to adjust the height of the lamp; a demonstrator
will show you how to do this safely.

Condition (a) is not yet satisfied; to do this, first rotate the grating so that the monochromator is set
to transmit the strong green line 546 nm. Then remove the lens from the system. Put your eye close to
the instrument and look into the spectrometer (not at the image). Then adjust the lateral position of the
source until light entering the spectrometer falls centrally on the grating. Finally, replace the
condensing lens between the source and entrance slit and bring an image of the source to a sharp focus
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on the slit. Put your eye close to the instrument again and look into it as before. There should be a
uniform elliptical patch of light falling centrally on the grating.

Focusing of objective mirror

The position of the cross-hair in the exit aperture should now be adjusted. Orient it X rather than +;
this makes it easier to set it on a spectral line. We require the cross-hair to be placed precisely where the
spectral line comes to a sharp focus. First move the cross-hair in and out by large amounts (centimetres)
while observing the rectangular patch of light falling on it from the monochromator, in order to get a
rough sense of where the focal position is (i.e. where the line is sharpest). Place it at your best estimate
of the correct position, then view the cross-hair through the high power eyepiece and perform a fine
adjustment using the no parallax method (i.e. no parallax between the cross and the spectral line). N.B.
you are still adjusting the cross-hair, not the eyepiece! The no parallax method is precise but can be
difficult to apply owing to distortion of the image as you move your eye around to view from different
directions. It is sufficient to use modest changes in viewing angle, so as to avoid this distortion.

The width of the entrance slit should now be adjusted to the optimum value. If the slit is too wide,
the accuracy of the wavelength measurements will be poor. If it is too narrow, you will have difficulty
in observing the weaker hydrogen lines. Bring the pair of yellow lines at 577 nm and 579 nm into view
and check that you can resolve them easily, then observe a few of the weaker lines of mercury to make
sure they are visible.

The apparatus should now be in good adjustment for quantitative experiments. Ask a demonstrator
to check it before you proceed with the calibration in section 6.

The visible spectrum of hydrogen

Mercury
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Figure 5 Schematic of mercury and hydrogen spectra. The wavelengths given are vacuum wave-
lengths (in A) because they are required in this particular experiment. Note, though, that you
will generally find air wavelengths quoted for visible lines as these are more usually needed
in practice. For example, the well-known strong mercury green line normally referred to by
its air wavelength as “the 5461 line” appears in the diagram above as 5462.2 A. [The refractive
index of air is about 1.0003.]
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The instrument is to be calibrated using the known wavelengths of the mercury lines shown in Figure
5. If this calibration is performed carefully, a precision in the value of Ry of better than 0.01% can be
achieved. Note, however, that a significant systematic error may arise if the width, and hence possibly
the centre position, of the slit is changed between the calibration procedure and the measurements on
the hydrogen spectrum.

Before proceeding, make sure you understand the logic of what you are about to do. Ultimately we
would like to use the monochromator to measure some unknown wavelength A (e.g. a line in the
hydrogen spectrum). What one actually records using the instrument is the micrometer reading z.
Therefore we need to know the relationship between A and z. The basic theory gave us such a
relationship (equation (4)), but that theory treated an ideal instrument, with no mechanical
imperfection, efc., so equation (4) is obeyed only approximately in practice. We can get a much more
precise equation relating z and 4 by using a calibration spectrum, in this case the spectrum of mercury.
By finding the value of z (micrometer reading) for a set of known A, we can plot on a graph the accurate
relation between z and A, and then use it for interpreting further measurements of unknown
wavelengths.

Of course for this we rely on someone else’s work who measured the mercury spectrum, and they
must have used a different method to calibrate their instrument. Such a reliance is involved in most
precise scientific work.

With the mercury lamp in position, record the micrometer readings for all the visible lines. Several
readings should be made for each line, but the lines must always be approached from the same side to
avoid any back-lash errors. Figure 5 sets out the approximate positions and intensities of the lines, so
that you should be able to identify them unambiguously. For example, the gap between the red and
orange lines is similar to the gap between orange and green: this gives you an idea of how far you
should expect to go past orange before seeing the final red ones.

Enter your data into a scientific data plotting computer program (you may need guidance from a
demonstrator, or consult appendix A), and obtain the plot of micrometer reading as a function of true
wavelength. N.B. the known wavelength should be on the horizontal axis, the measured micrometer
reading on the vertical axis.

Now consider how this information can best be used. The following procedure will give you some
training in the handling of this type of data using fitted curves. Note that this experiment is capable of
yielding results that are accurate to about 0.02%. You should ensure that your calculations and the
quantities obtained from the plots have enough significant figures to achieve this.

Clearly the data lie close to a straight line, as expected. Therefore first instruct the computer to furnish
the parameters of the best straight line fit. Next, obtain the “residuals”, that is, the differences zgu, — Zgy,
and plot them (versus known wavelength). The residuals plot gives information on the degree to which
the fitted straight line has correctly captured the main trends in the data. You should see on this plot the
random fluctuations present in the data, but may also see strong evidence that the straight line fit is not
adequate to capture what the data are really showing. Therefore, next instruct the computer to obtain
the parameters of a quadratic fit (i.e. polynomial function of degree 2), and plot the new set of residuals.
The quadratic function makes a good job of providing the desired calibration curve, so this is what you
should use when interpreting the hydrogen measurements. Also extract the standard deviation o, of
the set of residuals. As a check, make sure it agrees with your own rough estimate of the standard
deviation which you can obfain simply by looking at the residuals plot and estimating by eye.

Label and print out all four graphs for your report.

Ores Sives a measure of how far the calibration curve might be shifted up or down and still provide a
reasonable fit to the data. You should use this as the experimental uncertainty associated with each use
of the calibration curve. Appendix 2 gives a detailed discussion of this point for the keen student.
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The fitting procedure results in a formula for z in terms of lambda:

z= a/’L2+b/’l.+c:+c:»‘reS

It came out this way because the wavelength was the known quantity, while the micrometer reading
was the (noisy) observed quantity. Obviously, when you use this as a calibration curve for measuring
unknown wavelengths, you need to invert the formula, so as to obtain an expression for the wavelength
as a function of z. Fortunately a quadratic equation is easy to invert. To relate uncertainties in z to
uncertainties in 4, observe that

dz
4 =2ai +b.

Remove the mercury lamp and insert the capillary discharge tube. Without moving the cross-hair,
look at the patch of light on the grating, as before (use the red line) and put the lamp in such a position
that the illumination is correct (check with a demonstrator). Do not move the lens; this should remain
where it was for the calibration procedure. Note that excited hydrogen atoms are only one of the many
species produced in the discharge. In particular, strong emission bands of H, and OH™ molecules may
be seen in the region between the H, and Hj lines. In identifying the lines, you can be guided by the
approximate relationship quoted in section 3. If you are unsure of the identification of the lines, check
with a demonstrator (see Figure 5 for guidance).

Measure the wavelengths of the four visible lines of atomic hydrogen taking care to distinguish the
sharp atomic lines from the band-heads of the molecular spectra. If you find it hard to see Hg, try
turning off extraneous light sources and shielding your eyes so that they become dark-adapted (wide
pupil diameter). It may be necessary to widen the slit somewhat for this particular measurement, but
avoid resorting to that until you have completed all other measurements,

Use the calibration curve to obtain the correct vacuum wavelengths of these lines. The wavelengths
of the calibration lines in Figure 5 are vacuum values so your results need no correction, even though
the experiment itself is carried out in air.

The wavelengths in vacuo of the Balmer lines of atomic hydrogen are found to satisfy the expression

- 1 1
1/4,=v, =Ry (— - %] wheren=3,4,5,....00, &)

27
Calculate the separate values of Ryy together with their uncertainties from your data. The errors on each
value of Ryy may be determined by combining the errors due to the calibration and to the uncertainty
in measurement of the hydrogen lines. Finally, the separate vatues of Ry may be combined to give the
weighted mean Ry and the standard error of the mean 8Ryy, and your result should be expressed as

Ryt 8Ryin either em™ or m™ 1 Compare your result with the theoretical value (see section 7).

Bohr theory for atomic hydrogen

Itis simplest first, as Bohr did, to take the nucleus as fixed at the origin. This corresponds to assuming
that the proton is infinitely massive compared with the electron. Bohr postulated that the angular
momentum of an electron orbiting the nucleus of a hydrogenic atom is given by

mr=n#  where n is an integer. ()]
The centripetal acceleration is determined by the Coulomb attraction of the nucleus:

2 2
mev Ze

= . (7)
4n£07'2

¥

Substituting from equation {(6) gives
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2
e m,

=— ¢ . 8
471:80 n’h>

=

The total energy of the system is the sum of the kinetic and potential energies:

2
1 2 Ze
E,== - .
n= 3"t dmeyr
Substituting from equations (7) and (8) gives
P (ZEY e 1 o)
" iney ) on? y? .

The energy of a photon emitted in a transition from a level with quantum number n to one with
quantum number n” is given by

) zEN M, o1t
thazhCVnnf =En—En'=— H z_ﬁz (?_nlzj- (10)

0
The Rydberg constant for atomic hydrogen, Z = 1, is therefore given in the approximation of an
infinitely massive nucleus by

4
R.= [LJZ m.e - a1

dng) | gger®

A calculation in which the nucleus has mass M also gives equation (11) except that the electron mass,
Mg, is replaced by its reduced mass

m M

_ e
me+M

I (12)
Aninteresting consequence of this analysis is that the Rydberg constant for deuterium differs slightly

from that of hydrogen and gives rise to an isotope shift between the spectral lines of light and heavy
hydrogen.

For the particular case of hydrogen, we have,

4

2 m_m
RH=[1)3 Xt P (13)

41t£0 Arch’ me+mp

where 1, is the proton mass.

Lvaluate Ry to sufficient accuracy to allow critical comparison with your experimental result using
the following data:

£,=8.8542 x 1012 Fm !

e=16022x10"9 C

¢ =2.9979 x 108 ms~1

#=1.0546 % 10724 Jg~1
My =9.1095x 1071 kg
mp =1.6726 X 1072 kg

Notice that the reduced mass ¢ represents approximately a part per thousand correcﬁon,rcompared
to me. Comment on whether your experimental result gives clear evidence that Ry and not R, is
observed.
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Appendix 1 Computer software for data plotting

Al

High-level programming
A high-level programming package such as Matlab or its shareware cousin GNU Octave is excellent for
all sorts of scientific data manipulation and plotting. For this approach, first enter your data into a text

file, for example in two columns separated by spaces, and then at the Matlab or Octave prompt, use
commands such as

d = load('mydata.txt’)
x=d(:,1); y=d(:,2);
plot(x.y,'+")

If there are several y readings at each x, then you can use for example
y=d(:,2:n);

where  is the number of readings and I assumed your text file contains the data arranged in columns.
To get the mean and standard deviation of each set, keep in mind that standard functions such as mean
and std act on each column of a matrix, so first transpose:

y=v,

X=X
and then you can use for example

yav = mean(y);
ystd = std{y);

If for each data point you performed n independent readings of the same thing, then the statistical
uncertainty of the average is given by the standard deviation of the set of observations, divided by
V(n-1), so you can use

yerr = ystd / sqri{n-1);

to obtain an estimate of the experimental uncertainty of each value in yav. Note, however, that if all the
readings in a set agree, then this gives zero, an unacceptable underestimate. In such a case it should be
replaced by your best estimate of how uncertain you think your observations really were.

To learn how fo fit polynomial curves to the data, type

help polyfit

Once you have the coefficients cf of a fitted curve, you can plot both the smooth curve and your data
points on the same graph, for example using

xcurve = linspace( min(x), max(x), 1000 };
yeurve = cif{1) * xcurve A2 + ¢f(2) * xcurve + cf(3);
plot(x,y,'+, xcurve, ycurve)

where I showed for illustration the case of a quadratic fit. Note that when taking the square of the set
of xcurve values, you need the dot in front of the # operator. This is a short-hand to avoid the need to
write a “for loop”, it means the operation is to be performed on each element of the array xcurve.
Regard “.*" as a single operator (i.e. no space between the dot and the »).
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It should now be obvious how to get the residuals. First obtain yy; values just at your data points:
yiit = ¢f(1) * x.A2 +cf(2) * x + cf{3);
and then

yresid = y - yfit;
figure(2)
plot(x,yresid,".")

Obtain the standard deviation of the residuals by

sigmares = std{ yresid };

A good way to present data is to put the data, fit and residuals on a pair of graphs one above the other,
as follows:

subploi(2,1,1)

plot(x,y,'+, xcurve, yeurve)
subplot{2,1,2)
plot(x,yresid,"")

Use the Matlab commands title, xlabel and ylabel to add labels to your graph. You can put the cf values
into a legend using

text(xlocation, ylocation, string}

where you supply the x- and y location on the graph, and for the string you could use something like

string = ["Quadratic fit: a,b,c=' num2str(cf)]

(square brackeis are used in Matlab and Octave to concatenate arrays or strings). If there is not enough
room for this legend, then adjust the axis limits using the axis command. The syntax is

axis( [xmin xmax ymin ymax] )

Note the use of square brackets for the list, and round brackets for the function.
A good title for the residuals plot would be

title( ['Residuals: \sigma=' num2str{ sigmares ) ])

Plotting package

Software devoted to plotting, such as Origin, usually has a mouse-driven front end and this can make
it easier to get started. However, it can be difficult to figure out how to do scientific tasks such as curve
fitting, and it takes longer to create muliiple figures starting from similar data, because you have to
re-enter labels efc, by hand. Also, you should adjust the plotted points so that they are neither too large
nor too small, and you should normally use crosses (+) or error-bar symbols, not some other shape.

For a linear fit, in the program Origin, first select the x and y data columns, then go to the Tools menu
and select linear fit.

To get a residuals plot in Origin, you will need to create a new column in the spread sheet using the
column menu, and then right-click the new column, and select Set column values. In the box that appears,
type in the appropriate formula, such as ¢ol(C) = col{B) - (a + b*col(A)} where for a and b you should
substitute the parameter values obtained from your straight line fit, and I assumed the x (wavelength)

values are in col(A), while the y (micrometer) values are in col(B). You can now plot col(C) versus
col(A))

To get the parameters of a quadratic fit, use the analysis menu.
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Appendix 2 Interpreting a fitted curve

Fitting a curve to data is an extremely important scientific tool. It is mostly used to extract the values of
various parameters, such as the location, height and width of a peak in the data. Various types of
question arise: is the fit a “good” fit? how well are the parameters of the fit determined by the data?
what uncertainty is associated with the use of such a curve for calibration of an instrument? Here we
will focus on the last question.

Suppose for the sake of argument that we are fitting a quadratic curve to a set of data, as in the
monochromator experiment, and we wish to use this curve as a calibration curve. We would like to
know to what degree of accuracy we can trust this calibration.

There are two issues: first, is the instrument well modelled by a quadratic function? second,
supposing that it is, how precisely have we been able to obtain the true curve? The first question is
about systematic uncertainty, the second is about statistical uncertainty.

Consider first the idealised case of no systematic error. Each time we observe a known wavelength,
we add one more point to our data. This builds up the number of values in our set of residuals. The
standard deviation of the set will not change much as we go from, say, 10 to 20 to 30 observed
wavelengths, but we should expect that this increased information should be making the calibration
more reliable. It is. As long as we are sure the instrument is very well modelled by a quadratic function,
then the uncertainty (1 standard deviation) to be associated with any single use of the calibration curve
would be given by

(0]
res

n—23

O, (statistical) =

where 1 is the number of data points. This is substantially smaller than o,/

However, we can’t rule out the possibility that small deformities in the mechanical mechanism, such
as an indentation on the pad on which the micrometer bears, would lead to a systematic departure from
a quadratic function (the sine-bar length is about 75 mm, therefore it only requires an indentation of
depth 10 pm to introduce a part per 10000 shift in the grating angle). This means that, no matter how
many observations we make, the calibration curve will always be wrong, simply because it is the wrong
function to describe the instrument. The statistical error gets smaller as more observations are made,
but the systematic error does nat.

How large is the systematic error, then? This is always hard fo assess, and each experimental
apparatus needs to be considered individually. However, it is obvious that if the frue calibration curve
departed strongly from the one you picked, then you would notice because the residuals would not
look randomly distributed. Therefore we can argue that the systematic error is no larger than o, but
without further investigation we can’t claim that it is smaller than ..

The conclusion is that the uncertainty to be associated with any single use of the calibration curve is
Oyes if you do no further analysis at this stage (and that is acceptable). If you want to fake things further
{optional), then carry out a search for systematic effects. For example, you could group the data points.
For each group, find the mean j and the statistical error on the mean o . Then fit a curve to these ¥ and

examine whether the scatter in the residuals is consistent with the error bars oy -
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