

Growth Techniques

- Czochralski Method (LEC) (Bulk Crystals)
- Chemical Vapor Deposition (CVD) (Thin films; epitaxial film growth)
 - Metal-Organic Chemical Vapor Deposition (MOCVD
- Molecular Beam Epitaxy (MBE) (Thin films)
- Liquid Phase Epitaxy (LPE) (Thin films)

Czochralski Method

Liquid-Encapsulated Czochralski (LEC) Method. As expected, LEC-grown GaAs often contains boron as a contaminant.

Thin Film Growth

(General)

- High Quality Film (1µm or less thickness) deposited on high quality substrate.
- To minimize strain, need crystal structure of film & substrate to be ~ same (at least very similar
- Epitaxy: "in an ordered way"
 Homoepitaxy: same structure as substrate
 Heteroepitaxy: different structure than substrate

Chemical Vapor Deposition (CVD)

• Example reaction:

$$SiH_4$$
 (heat) \longrightarrow $Si + 2H_2$ (Silane gas) (On substrate) (gas)

- Reaction occurs in a sealed container (reactor)
- NOTE!! Silane gas is highly toxic & highly explosive!!
- **NOTE!!** Hydrogen gas is highly explosive!!!!

Metal-Organic Chemical Vapor Deposition (MOCVD)

• Example reaction:

Ga(CH₃)₃ + AsH₃
$$\rightarrow \rightarrow$$

(Metal-organic gas) (Arsene gas)
3CH₄ + GaAs
(Methane gas) (on substrate)

- Reaction occurs in a sealed container (reactor)
- NOTE!! Arsene gas is highly toxic and highly flamable!!
 Methane gas is highly explosive!

Molecular Beam Epitaxy (MBE)

- Thin film growth under ultra high vacuum.
- · Reactants introduced by molecular beams.
- Create beams by heating source of material in an effusion (or Knudsen) cell.
- Several sources, several beams of different materials aimed at substrate

Can deposit 1 atomic layer or less!

 A very precisely defined mixture of atoms to give <u>EXACTLY</u> the desired material com

The Receive Vauxute Alk RBFRHEED electron gun cryopanel (liquid N_2)

main shutter

MOCVD vs. MBE

One period of oscillation \equiv growth of one atomic

layer of GaAs (or whatever material)

MBE

- Mainly useful for research lab experiments. Not efficient for mass production!
- · High quality presure in the reacher 10" mbou
- Low growth rate ~ un /h

· High Homogeneity

MOCVD

- Useful for lab experiments and for mass production
- Good-high quality
- High growth rate (~)